martes, 2 de junio de 2015

HISTORIA DE LA ELECTRONICA



Sobre la Historia de la Electrónica en el Primer Centenario de su Nacimiento: La Era Termoiónica


Juan Carlos A. Floriani, Member, IEEE Resumen–En el presente trabajo se hace una descripción histórica del proceso de desarrollo de la electrónica en su primera parte: la era termoiónica. Se describen las contribuciones de los tres autores principales que dieron origen a la misma : Edison, Fleming y De Forest. Se describe además la contribución hecha por la física y se proponen algunos de los desarrollos más importantes en su fase de madurez como el tetrodo, pentodo, thyratrón, magnetrón y el klystron. En todos los casos se da una breve descripción técnica de los mismos acompañada de la información histórica relacionada con la fecha y autoría de cada desarrollo. Se propone además, en forma breve, el rol de las vávulas en la actualidad. Palabras claves–Electrónica termoiónica, Historia de la electrónica. I. INTRODUCCIÓN En la actualidad, la palabra electrónica está directamente asociada con las computadoras, televisores, teléfonos celulares, etc. En realidad para hablar de electrónica es necesario recordar que dicha rama de la ingeniería sienta sus bases en la teoría del electromagnetismo y los circuitos eléctricos. Por lo tanto desde B. Franklin (1706-1790) hasta B. D. H. Tellegen cuando en 1952 publicó su teorema [1], contribuyeron en alguna medida. Para una breve reseña histórica sobre el electromagnetismo y los circuitos eléctricos se sugiere la bibliografía [2]. Pero el inicio del desarrollo especifico de la electrónica aparece en 1883 cuando T. A. Edison descubre la emisión termoiónica o efecto Edison. Sin embargo, la gestación de la misma se produce en 1904 cuando Sir J. A. Fleming propone el diodo o válvula de Fleming. Finalmente, nace e inicia el recorrido de un largo camino dos años más tarde, cuando en 1906 L. De Forest propone el triodo o Audion, como él lo llamaba. Diferentes son las “importantes” contribuciones que la electrónica termoiónica propuso en su desarrollo en el transcurso de los años. Muchas de esas aplicaciones existen en el presente, con las obvias actualizaciones tecnológicas, como por ejemplo: la telefonía inalámbrica, la radio, la televisión (1927), etc. Quizás la contribución menos conocida por los jóvenes sea la computadora Mark 1, desarrollada en 1944 por la IBM y la Universidad de Harvard. Esta computadora fue reemplazada en 1947 por una versión mejorada denominada ENIAC, desarrollada por la Universidad de Pennsylvania. El autor recuerda que su abuelo materno escuchaba música en una radio multibanda, de dimensiones imponentes, alimentada con una batería de 6V. . Este aparato pertenecía, tecnológicamente, a la era termoiónica. Otro hecho importante El autor pertenece a San Lorenzo, 2821 Santa Fe, Argentina (e-mail: jcafloriani@hotmail.com). fue la lectura de la serie Electrónica Básica [3], durante el período de escuela secundaria, sumado a algunas aplicaciones vistas en la universidad. Estos hechos explican el deseo de brindar un humilde pero bien merecido homenaje (en español) a los pioneros de la electrónica, en el primer centenario de su nacimiento 1906-2006. II. CONTRIBUCIÓN DE EDISON Thomas Alva Edison [4]. En el año 1883, el inventor estadounidense Thomas Alva Edison (1847-1931) trabajaba en un experimento con lámparas incandescentes en las cuales utilizaba un filamento de carbón. Estos filamentos se rompían con mucha facilidad ya que estaban formados por hilos muy finos. Su objetivo era encontrar un sistema que le permitiera aumentar la vida útil de las lámparas. Para lograr esto, Edison construyó un soporte metálico que conectó al frágil filamento mediante partes aisladoras [3]. A partir de este hecho surgen diferentes versiones sobre el descubrimiento de la emisión termoiónica, que es esencialmente la emisión de electrones por un cuerpo sobrecalentado. Por ejemplo en [3], se afirma que: por razones que se desconocen, Edison conectó el soporte metálico al terminal positivo de la batería que alimentaba la lámpara, como se muestra en la figura 1. Sorprendido, observó que circulaba corriente. Otros autores afirman que: el carbón que se desprendía del filamento se depositaba en la superficie interna de la ampolla de vidrio de la lampara ennegreciéndola. Por tal razón, Edison decidió generar una “absorción” de estas partículas mediante una “atracción electrostática” (polarización eléctrica), observando que circulaba corriente en modo permanente. Delogne en [5], afirma que el descubrimiento fue hecho sin la introducción de una tensión (batería) en el circuito (ver fig. 1). En la época de Edison, los circuitos eléctricos funcionaban con el positivo a masa, por lo tanto es posible que su intensión haya sido conectar el hilo metálico del soporte a masa. De todo esto no se logra entender con precisión si Edison comprendió que se trataba de cargas eléctricas y que estas eran 242 IEEE LATIN AMERICA TRANSACTIONS, VOL. 4, NO. 4, JUNE 2006 negativas. Todo hace suponer que efectivamente logró comprender este hecho básico, lo que seguramente no comprendió es el origen de tales cargas, cosa que sucedió con posterioridad al 1883, y menos aun que se trataba de electrones. Solo 21 años más tarde, Fleming pudo demostrar la importancia aplicativa de esta corriente. A decir verdad una aplicación importante ya existía y es precedente a Fleming, se trata del tubo de rayos catódicos (TRC) inventado por el físico alemán K. F. Braun1 (1850-1918) en 1897. Fig. 1. Lámpara de Edison [3]. III. CONTRIBUCIÓN DE FLEMING John Ambrose Fleming [6]. En 1889, el ingeniero y físico inglés Sir John Ambrose Fleming (1849-1945) de la Universidad de Londres, inicia una serie de investigaciones sobre el efecto Edison o emisión termoiónica. En 1904, propone el diodo termoiónico o “válvula de Fleming”. El nombre “válvula” surge por la similitud con las válvulas mecánicas, debido a la propiedad de conducir corriente en un solo sentido [3], [6], [7]. La válvula de Fleming consistía básicamente de un bulbo de vidrio el cual encerraba un filamento de carbón o tungsteno, con un segundo electrodo formado inicialmente por un hilo metálico arrollado alrededor del filamento sin contacto entre ellos, que hacía las veces de placa. Posteriormente, fue reemplazado por un cilindro metálico (fig. 2 (a) y (b)). El filamento cumplía además la función de cátodo, el cual al calentarse por el paso de una corriente eléctrica generaba la “nube electrónica” debida a la emisión 1 En 1909, Braun recibió el Premio Nobel de física junto al italiano G. Marconi, por el desarrollo de la telegrafía sin hilos. termoiónica. El cilindro metálico o placa era accesible desde un lateral del bulbo de vidrio. Contrariamente, el diodo moderno posee dos electrodos separados para las funciones de filamento y cátodo, respectivamente. Esta separación permite generar circuitos eléctricos aislados entre filamento y cátodo, además es posible mejorar la emisión del cátodo. En la figura 2, se pueden ver detalles constructivos y los correspondientes símbolos. IV. CONTRIBUCIÓN DE De FOREST Lee De forest con su Audion [5]. En 1906 el ingeniero estadounidense Lee De Forest (1873- 1961) propone y patenta el Audion (posteriormente llamado triodo), una versión modificada del diodo de Fleming, con el agregado de un electrodo de control o grilla (ver fig. 3). Sin embargo, la publicación del invento tuvo lugar en 1914 por razones de patente [5], [8]. De los contenidos del artículo de De Forest no surge con claridad cuales fueron los motivos que lo llevaron a generar una modificación del diodo de Fleming. Evidentemente se trataba de una necesidad de “control” del flujo de electrones al interno del dispositivo, para a su vez lograr un control de la corriente de placa. Probablemente la aplicación más lógica sea como interruptor de corriente (relay no mecánico), para ser usado en telegrafía y telefonía, campos en los cuales De Forest trabajaba en la época. Sin duda De Forest conocía al momento de la publicación, además de la propiedad detectora, la propiedad amplificadora del dispositivo. Esto surge de manera evidente a partir del título de su trabajo [8]. En tal publicación se muestran aplicaciones de un cierto desarrollo tecnológico, como por ejemplo amplificadores de dos y tres etapas (ver figura 3). En tal figura se observa además el tipo de polarización básica usada (compárese con la fig. 4), además del cátodo y filamento en un único electrodo. El Audion de De Forest generó una serie de controversias con Fleming atribuyéndose ambos la propiedad intelectual del desarrollo, dado que Fleming sostenía que el Audion era un diodo modificado. De un rápido análisis surge inmediatamente la diferencia más evidente entre estos dispositivos ya que el triodo (o Audion) posee un electrodo de control, el diodo no. En la figura 4, se muestra el circuito de polarización del triodo y la característica de salida. FLORIANI : ON THE HISTORY OF ELECTRONICS TO A 243 (a) (b) Placa Filamento (c) (d) Placa Cátodo Filamento (e) Fig. 2. (a)Válvula de Fleming [6], (b)-(c)Detalle constructivo [3] y símbolo de un diodo tipo Fleming. (d)-(e) Detalle constructivo [3] y símbolo del diodo moderno. Fig. 3. Circuito del amplificador de De Forest [8] y detalles constructivos de un triodo moderno [3]. Placa Cátodo Grilla Señal Salida +B - Tensión de Placa [V] Corriente de Placa [mA] 5 10 15 100 200 300 Tensión de grilla Vg = -1 V Vg = -3 V Vg = -5 V Vg = -7 V Vg = -9 V Fig. 4. Polarización de un triodo y característica de salida. V. CONTRIBUCIÓN PARALELA DE LA FÍSICA Cuando Edison descubre la emisión termoiónica, en 1883, seguramente no tenía la mínima noción de que se trataba de electrones y tampoco que poseían masa (por lo menos con certeza científica). El nombre electrón le fue dado por el físico ingles G. J. Stoney (1826-1911) en 1891 y fue descubierto en 1897 por el físico ingles J. J. Thomson (1856-1940), en un experimento orientado a encontrar la relación e m del mismo. Para este experimento, Thomson utilizó un tubo de rayos catódicos, que a su vez emplea la emisión termoiónica para su funcionamiento [9]. La determinación directa del valor de la carga del electrón fue hecha por varios investigadores en diferentes trabajos. Por ejemplo, la determinación de la carga elemental en forma directa fue hecha por Townsend en 1897, por J. J. Thomson en 1898 y por H. A. Wilson en 1903. Algunos autores atribuyen la medida de e a Ch. T. R. Wilson en 1913. En 1917, R. A. Millikan2 (1868-1953) midió la constante e y el valor obtenido fue 19 1.59 10 − − × coulombs. La carga negativa del 2 Por este trabajo y otros, Millikan recibió el Premio Nobel de física en 1923. electrón fue demostrada por el físico francés J. B. Perrin (1870-1942). El valor actual de la misma es 19 1.602 10 − − × coulombs y se debe a los experimentos de Hopper y Laby en 1941 [9]. En 1901 aparece el primer trabajo que da una descripción cuantitativa del fenómeno de emisión termoiónica y es debida al físico inglés O. W. Richardson (1879-1959) quien establece una relación entre la cantidad de electrones emitidos y la temperatura: RT W e m RT N n − = 2π en la cual: N es el número de electrones emitidos por unidad de superficie; T es la temperatura absoluta; n número de electrones libres en el metal; R es la constante del gas para un electrón (constante de Boltzman); m es la masa del electrón [10]. Si los electrones están animados de una cierta energía cinética, producen una corriente eléctrica. La expresión de Richardson que relaciona la corriente (de saturación) con la temperatura es [10]: 244 IEEE LATIN AMERICA TRA